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Abstract—We present a new design for the electrodes of coaxial 
switched oscillators using a 3D curvilinear system. The Laplace 
Equation is solved in the curvilinear space and analytical 
expressions are derived for the electrostatic field distribution.  
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I. COAXIAL SWITCHED OSCILLATOR 
The overall geometry of a coaxial switched oscillator 

(SWO) is depicted in Figure 1. It is composed of a charged 
transmission line (coaxial in this case) connected to a higher 
impedance antenna at one end and to a closing, self-breaking 
switch gas at the opposite end.  
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Figure 1. Quarter wave coaxial switched oscillator (SWO). Notice the presence of the electrodes at the 
bottom end of the coaxial line. 

II. ELECTRODES PROFILE

We propose to generate the electrodes of the spark gap using 
two conformal surfaces in a curvilinear orthogonal space, 
generated from a 2-D transformation called Inverse Prolate 
Spheroid (IPS), proposed by Moon and Spencer ([1], page 67).  

The IPS profile ensures a maximum electric field on the axis 
of symmetry, and a monotonical decrease when moving towards 
the coaxial transmission line.  

The IPS coordinate (u, v, w) has the following relationship 
with the Cartesian coordinate system:  (1) 
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where: a >0 is a constant and (u,v,w) are defined in the range: 
0  u  ;  0  v   ;  0  w 2 . 

A 3D representation of the curvilinear system is shown in 
Figure 2. It can be seen that the surface u=constant forms an 
inverted prolate spheroid of revolution, while the surface 
v=constant forms an inverted double sheet hyperboloid of 
revolution and the surface w=constant forms a plane.  

The electrodes are formed taking two u=constant surfaces 
(u=u2 and u=u1) connected to the outer and inner conductors of 
the coaxial transmission line of the SWO. 

Laplace Equation is r-separable in this system. The solution of 
the electrostatic potential is of the form: 

     
 

2 2

2
1

2
1 2

3, ,
2

cosh u sin v

k k sin v

V u
V u v w log k coth

    


 
  

(3) 

where k1, k2 and k3 are constants obtained from the boundary 
conditions of the problem and V(u1,v,w)=V1  and V(u2,v,w)= 0. 

Applying the equation for the gradient in the ISP system gives 
the following expressions for the electric field  

E
u
(u,v,w) 

V
1
 log

coth u / 2 
coth u

2
/ 2 









 sinh 2u   2cosh u coth u   2csch u Sin v 2









ak
1

cosh 2u   cos 2v  cos 2v   cosh 2u
1 

(4)
 

Figure 2. Constant surfaces in the Inverse Prolate Spheroidal coordinate system. The surfaces were 
generated with parameter a=1. Notice the surfaces corresponding to u-set and v-set. 

III. CONCLUSIONS

Analytical solution for the electrostatic field distribution in the 
interelectrodic space of a coaxial SWO was obtained. The 
derived equation can be used during the design phase of the 
spark gap. Furthermore, the derived expression allows deriving 
an analytical solution for the characteristic impedance of the 
SWO’s radial transmission line. 
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