## Fiber-Optic Sensor: A New Tool for Lightning Current Measurement

Truong X. Nguyen, Jay J. Ely and George N. Szatkowski NASA Langley Research Center Hampton, VA 23681-0001, U.S.A. truong.x.nguyen@nasa.gov

Abstract— A fiber-optic current sensor is developed for measuring aircraft in-flight lightning current. It is based on Faraday Effect, which causes light polarization in a fiber to rotate when the fiber is exposed to a magnetic field. Advantages include the abilities to measure total enclosed lightning current and to conform to structure geometry. The sensor is capable of measuring 300 A – 300 KA, a 60 dB range. This paper reports test results of lighting direct and in-direct effect current amplitudes. Potential applications extend beyond aircraft and lightning uses.

Keywords - lightning; Faraday Effect; fiber-optic; current;

## I. INTRODUCTION

Sensors used in previous efforts to measure in-flight lightning current suffered from installation issues or inability to directly measure total currents. A fiber-optic current sensor was developed that addressed these concerns for in-flight measurements. When installed around structures of interest the sensor can measure the total current enclosed by the optical fiber sensing loop, much like a Rogowski coil. However, it is self-integrating, and can measure DC current. The fiber is light weight, flexible, and conformable to arbitrary structure shapes. It does not suffer from hysteresis and saturation like current transformers. Being non-conductive, the sensing fiber can be safely routed directly into the aircraft fuselage, eliminating the need for optical converters. Applications are not limited to aircraft and lightning.

## II. SENSOR CONCEPT AND TEST RESULTS

Faraday Effect causes light polarization in the sensing fiber to rotate when exposed to an external magnetic field in the direction of light propagation [1,2]

$$\phi = V \int \mathbf{B} \cdot dl = \mu_0 V \int \mathbf{H} \cdot dl \tag{1}$$

where  $\phi$  is the polarization rotation angle in radians, V is the Verdet constant, **B** is the magnetic flux density, **H** is magnetic field, and l is length. Forming N fiber loops and applying Ampere's law result in  $\phi$  being directly proportional to the total current enclosed I (Eq. 2). Thus, I can be determined by determining  $\phi$ .

$$\phi = \mu_0 V \oint \mathbf{H} \cdot dl = \mu_0 V N I \tag{2}$$

Fig. 1 illustrates a polarimetric detection scheme to determine the rotation angle  $\phi$ . The optical scheme uses a 1310nm wideband laser, a spun highly birefringent sensing fiber [2], a reflective scheme with a Faraday mirror, and a dual-detectors setup for common-mode noise subtraction. Measurement range from 300 A to 300 kA was achieved, a 60 dB range [3].

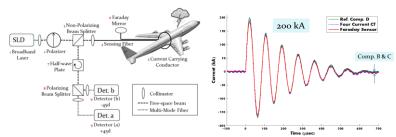



Figure 1. Optical detection scheme.

Figure 2. 200 kA current test.

Pearson in Regowish Coll Foroday Sensor

4 kA

Figure 3. Measurement on a simulated aircraft fuselage.

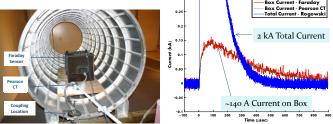



Figure 4. Low level measurement on an internal structure.

A number of tests were performed with good results. Fig. 2 illustrates a 200 kA peak current test at a commercial lightning test facility. Reasonably good results were achieved despite an imperfect setup due to installation limitations. Fig. 3 illustrates measurement on a simulated aircraft fuselage. The peak current was 4 kA, limited by the laboratory test equipment used. Fig. 4 demonstrates excellent isolation for low current measurement on an internal structure (simulating equipment or wire bundles) in the presence of a significantly larger current on the outer aluminum structure. Sensors of the same design also successfully measured triggered lightning [3] with excellent result comparisons though data are not reported here.

## III. REFERENCES

- [1] J. M. Lopex-Higuera, Editor. Handbook of Optical Fibre Sensing Technology, 2002; Sections 27.2 - 27.4.
- [2] R. Laming and D. Payne, "Electric Current Sensors Employing Spun Highly Birefringent Optical Fibers," Journal of Lightwave Technology, Dec. 1989.
- [3] T. Nguyen, J. Ely, G. Szatkowski, C. Mata, A. Mata, G. Snyder, "An Intrinsic Fiber-Optic Sensor for Structure Lightning Current Measurement," 2014 Int. Lightning Detection Conference (ILDC).